MOSFET: Metal Oxide Semiconductor Field Effect Transistor Control current flow between S and D with voltage applied at G NMOS, PMOS #### NMOS: n-channel MOSFET Can currents flow between S and D? - → Need carriers (electrons) - → Apply gate voltage (v_{GS} >V_T>0) (V_T: Threshold voltage) With $v_{GS}>v_T$ (threshold voltage), channel is formed. (Gate and p-substrate is acting as a capacitor) More carriers with higher v_{GS} How does i_D change with v_{DS} ? - With v_{DS} increase, i_D begins to saturate - → Less carriers In Drain side (V_{GD}=V_{GS} + V_{SD}=V_{GS}-V_{DS}) When $v_{DS} = v_{GS} - v_{T,} (v_{GD} = v_{T})$, channel is pinched off →No further increase in i_D #### MOSFET (NMOS) I-V Characteristics #### NMOS: n-channel MOSFET #### **Circuit Symbols** With more detailed analyses (but still approximate), In triode, $$i_D = \mu_n C_{ox} \frac{W}{L} \left[(v_{GS} - V_t) \cdot v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$ $(v_{GS} > V_t \text{ and } v_{DS} \le v_{GS} - v_T)$ In saturation, $$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)^2$$ $(v_{GS} > V_t \text{ and } v_{DS} \ge v_{GS} - v_T)$ μ_n : electron mobility C_{ox} : oxide capacitance V_t : threshold voltage $$k' = \mu_n C_{ox}$$ Determine R_D and R_S so that I_D =0.4 mA and V_D =0.5V. $$V_t = 0.7V$$, $\mu_n C_{ox}$ (k') = 100 μ A/V², L= 1 μ m, W= 32 μ m - 1. What region is the MOSFET in? - 2. What is V_S ? - 3. R_D and R_S ? #### Example 4.4 Determine R_D so that $V_D = 0.1V$. $$V_t$$ = 1V, $\mu_n C_{ox} W/L$ = 1mA/V² - 1. What region is the MOSFET in? - 2. What is I_D? - 3. Whait is R_D ?